Nanotechnology Identifies Peptide "Fingerprint" in Both Forms of ALS

Libraries
Science News Keywords
ALS LOU GEHRIG'S DISEASE NANOTECHNOLOGY PEPTIDE PROTEOMICS Contact Information
Available for logged-in reporters onlyDescription
A nanotechnology developed by a University at Buffalo professor has enabled researchers to identify a molecular signature common to both familial and sporadic cases of amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease.
Image GalleryA nanospray emitter developed by chemist Troy Wood has identified a common molecular signature in familial and sporadic forms of Lou Gehrig's disease. Click image to view fullsize Image 1 of 1
Newswise — A nanotechnology developed by a University at Buffalo professor has enabled researchers to identify a molecular signature common to both familial and sporadic cases of amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease.
It is the first time that a common molecular signature has been found in patients with both familial and sporadic cases, where no other family members have the disease, of ALS.
The finding, published in July in the Proceedings of the National Academy of Sciences, reveals that a peptide found in a gene in spinal cord fluid is common to patients with the disease.
The work was done through a collaboration of UB chemists with scientists studying ALS at California Pacific Medical Center Research Institute, The Johns Hopkins University, University of California at San Diego and University of Pittsburgh.
Troy Wood, Ph.D., associate professor of chemistry in UB's College of Arts and Sciences and a co-author on the PNAS paper, began working with the ALS researchers following a talk given in 2005 at UB's New York State Center of Excellence in Bioinformatics and Life Sciences by Vishwanath R. Lingappa, Ph.D., a research institute scientist from California Pacific.
At the suggestion of Bruce A. Holm, Ph.D., senior vice provost and executive director of the Center of Excellence, Wood began working with Lingappa to identify an unknown protein species he and his team had found in nanogram quantities (billionth of a gram) in spinal cord fluid samples from ALS patients.
At such low quantities, Wood explained, the standard analytical chemistry technologies are of no use.
"Only nanotechnology is capable of identifying a species in these amounts," he said. "Because of the minute amounts of analyte that are present in some samples, nanospray technologies, in particular, which reveal what we call a peptide's mass 'fingerprint,' have emerged as one of the most important tools in the field of proteomics."

http://www.newswise.com/articles/view/533048/