Results 1 to 3 of 3

Thread: Stem cell-based cell therapy for spinal cord injury.

  1. #1

    Stem cell-based cell therapy for spinal cord injury.

    Cell Transplant. 2007;16(4):355-64.

    Stem cell-based cell therapy for spinal cord injury.

    Kim BG, Hwang DH, Lee SI, Kim EJ, Kim SU.

    Brain Disease Research Center, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea.

    Traumatic injuries to the spinal cord lead to severe and permanent neurological deficits. Although no effective therapeutic option is currently available, recent animal studies have shown that cellular transplantation strategies hold promise to enhance functional recovery after spinal cord injury (SCI). This review is to analyze the experiments where transplantation of stem/progenitor cells produced successful functional outcome in animal models of SCI. There is no consensus yet on what kind of stem/progenitor cells is an ideal source for cellular grafts. Three kinds of stem/progenitor cells have been utilized in cell therapy in animal models of SCI: embryonic stem cells, bone marrow mesenchymal stem cells, and neural stem cells. Neural stem cells or fate-restricted neuronal or glial progenitor cells were preferably used because they have clear capacity to become neurons or glial cells after transplantation into the injured spinal cord. At least a part of functional deficits after SCI is attributable to chronic progressive demyelination. Therefore, several studies transplanted glial-restricted progenitors or oligodendrocyte precursors to target the demyelination process. Directed differentiation of stem/progenitor cells to oligodendrocyte lineage prior to transplantation or modulation of microenvironment in the injured spinal cord to promote oligodendroglial differentiation seems to be an effective strategy to increase the extent of remyelination. Transplanted stem/progenitor cells can also contribute to promoting axonal regeneration by functioning as cellular scaffolds for growing axons. Combinatorial approaches using polymer scaffolds to fill the lesion cavity or introducing regeneration-promoting genes will greatly increase the efficacy of cellular transplantation strategies for SCI.


    http://www.ncbi.nlm.nih.gov/sites/en...ubmed_RVDocSum
    “As the cast of villains in SCI is vast and collaborative, so too must be the chorus of hero's that rise to meet them” Ramer et al 2005

  2. #2

    TM question for any of the docs on forum

    Has this treatment been implemented in the US yet, and shouldnt it work for TM patients?

  3. #3
    Note that the study above is from Korea, and was an ANIMAL (not human) study published 5 years ago.

    (KLD)

Similar Threads

  1. Replies: 80
    Last Post: 03-22-2006, 05:25 PM
  2. Adult Stem Cells vs Embryonic Stem Cells
    By smithpl in forum Cure
    Replies: 6
    Last Post: 02-24-2006, 11:11 AM
  3. Replies: 0
    Last Post: 09-22-2005, 04:25 PM
  4. Replies: 104
    Last Post: 07-24-2004, 12:56 PM
  5. LANCET´S ARTICLE
    By KIM in forum Cure
    Replies: 2
    Last Post: 10-04-2002, 09:52 AM

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •