Researchers work out the mechanics of asymmetric cell division When a cell divides, normally the result is two identical daughter cells. In some cases however, cell division leads to two cells with different properties. This is called asymmetric cell division and plays an important role in embryonic development and the self-renewal of stem cells.

Researchers from the European Molecular Biology Laboratory (EMBL) have now worked out the mechanism underlying asymmetric cell division in nematode worms. The study, which is published in the current issue of Cell, reveals that interactions between the mitotic spindle and the cell cortex are crucial for asymmetric division.

Soon after the egg cell has been fertilized, the developing embryo of the nematode worm Caenorhabditis elegans undergoes its first cell division. The division gives rise to a bigger cell at the anterior end of the embryo, where the head will develop, and a smaller cell at the posterior end. For this asymmetric division to take place, the mitotic spindle, the apparatus that separates a cell's chromosomes, needs to be located not centrally but towards the posterior of the egg. The cellular structures that make sure the spindle gets to the right place are protein filaments called microtubules. They are dynamic structures that constantly grow and shrink by adding on or taking off individual building blocks. ...........

Source: European Molecular Biology Laboratory

full story : http://www.physorg.com/news97413782.html