Murray PD, McGavern DB, Pease LR and Rodriguez M (2002). Cellular sources and targets of IFN-gamma-mediated protection against viral demyelination and neurological deficits. Eur J Immunol. 32 (3): 606-15. Summary: IFN-gamma is an anti-viral and immunomodulatory cytokine critical for resistance to multiple pathogens. Using mice with targeted disruption of the gene for IFN-gamma, we previously demonstrated that this cytokine is critical for resistance to viral persistence and demyelination in the Theiler's virus model of multiple sclerosis. During viral infections, IFN-gamma is produced by natural killer (NK) cells, CD4(+) and CD8(+) T cells; however, the proportions of lymphocyte subsets responding to virus infection influences the contributions to IFN-gamma-mediated protection. To determine the lymphocyte subsets that produce IFN-gamma to maintain resistance, we used adoptive transfer strategies to generate mice with lymphocyte-specific deficiencies in IFN-gamma-production. We demonstrate that IFN-gamma production by both CD4(+) and CD8(+) T cell subsets is critical for resistance to Theiler's murine encephalomyelitis virus (TMEV)-induced demyelination and neurological disease, and that CD4(+) T cells make a greater contribution to IFN-gamma-mediated protection. To determine the cellular targets of IFN-gamma-mediated responses, we used adoptive transfer studies and bone marrow chimerism to generate mice in which either hematopoietic or somatic cells lacked the ability to express IFN-gamma receptor. We demonstrate that IFN-gamma receptor must be present on central nervous system glia, but not bone marrow-derived lymphocytes, in order to maintain resistance to TMEV-induced demyelination. Department of Immunology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.