Neuralstem seeks US FDA approval to begin chronic spinal cord injury stem cell trial

Monday, September 06, 2010 15:00 IST
Rockville, Maryland

Neuralstem, Inc. announced that it has filed an Investigational New Drug (IND) application with the United States Food and Drug Administration (FDA) to begin a phase I safety clinical trial for chronic spinal cord injury with its spinal cord stem cells. This multicenter phase I safety trial will enrol a total of 16 long-term, or chronic, spinal cord injury patients, with an American Spinal Injury Association (ASIA) Grade A level of impairment, one-to-two years post-injury. ASIA A refers to a patient with no motor or sensory function in the relevant segments and is considered to be complete paralysis.

"We are very encouraged by what we have learned transplanting the first six ALS (Amyotrophic Lateral Sclerosis) patients in our FDA-approved trial in Atlanta," said chief scientific officer and chairman of Neuralstem's Board of Directors, Karl Johe, Ph.D. "We believe that it is the right time to leverage what we have learned with ALS in spinal cord injury. We will be looking at secondary endpoints as well, by which we hope to measure some degree of functional recovery. As in the ALS trial, we are proposing to transplant patients with injuries in the thoracic (mid-back) regions first. Once the safety of the surgeries has been established, we plan to transplant patients whose injuries are in the cervical (upper spinal cord) region."

Clinical studies with chronic SCI patients have demonstrated that, even several years after motor- and sensory-complete SCI, intensive and task-specific rehabilitation can improve motor function as measured by the ASIA Impairment Scale (AIS). These clinical experiences, together with results from numerous animal studies of SCI, illustrate that even the complete, chronically-injured cord can undergo some degree of recovery and reorganization. Transplantation of Neuralstem's human spinal stem cells (HSSC) is meant to provide a neuron-rich substrate to the injured segments of a patient's spinal cord to promote further repair, regeneration, and reorganization. The goal is to harness this inherent plasticity and promote reorganization by combining stem cell transplantation with the modern concept of activity-guided rehabilitation.

Neuralstem believes that, in chronic SCI, our HSSC transplants may promote reorganization of segmental circuitry over the long-term. In the cervical region of the spinal cord, this could result in improved breathing capacity and recovery of sensori-motor functions of the upper limbs. Segmental reorganization induced by, and utilizing graft-derived neurons, may also result in improved locomotion.

Neurons differentiated from Neuralstem's HSSC grafts in chronic thoracic injuries may serve as a bridge to connect the axons located above the site of injury to neurons of segments below the injury site. HSSC grafts may also encourage axons to regenerate through the graft to segments below the injury.

More on: