Page 3 of 10 FirstFirst 12345678910 LastLast
Results 21 to 30 of 99

Thread: what can I do?

  1. #21
    Quote Originally Posted by Rev Coleen View Post
    Thank you, and I'm working on taking your advice. Right now my insurance is messed up (again) so I have to work on getting it straightened out again first.
    The bike accident involved me, a squirrle & a softball sized rock, and I seriously doubt the squirrle is insurred, but my insurance wants their company to pay my medical - go figure.
    Along with KLD's good advice you may want to read about basic spinal anatomy so you don't get nervous about the terminology.

    The spine or backbone is made of 33 individual bony vertebrae. This spinal column provides the main support for your body, allowing you to stand upright, bend, and twist, while protecting the spinal cord from injury. A healthy spine provides strength, is flexible, and allows movement in several planes. Strong bones and muscles, flexible tendons and ligaments, and sensitive nerves contribute to a healthy spine. Yet, any of these structures affected by strain, injury, or disease can cause pain.
    Spinal curves
    At birth, a baby’s spine is C-shaped. As the child develops learning to crawl and then walk, the spine adapts from four-legged to two-legged locomotion. An adult spine has natural curves that form an S-shape. Yet, in this upright posture, the spine is constantly being pulled forward by the weight of the body. Viewed from the side, the cervical and lumbar regions have a lordotic, or slight concave curve, and the thoracic and sacral regions have a kyphotic, or gentle convex curve (Fig. 1). The spine’s curves work like a coiled spring to absorb shock, maintain balance, and allow the full range of motion throughout the spinal column.
    These natural curves are maintained by the muscles and correct posture. Good posture involves training your body to stand, walk, sit, and lie so that the least amount of strain is placed on supporting muscles and ligaments during movement or weight-bearing activities (see Posture).
    An abnormal forward curve of the lumbar spine is lordosis, also called sway back. An abnormal curve of the thoracic spine is kyphosis, also called hunchback. Sometimes the spine abnormally curves from side-to-side, in a condition called scoliosis. A mild curvature (less than 20 degrees) is usually not noticeable or a health concern. However, moderate curves (between 25 to 40 degrees) and major curves (over 45 degrees) are treated with braces or surgery. Scoliosis can put pressure on the heart and lungs as well as limit physical activity.
    The two main muscle groups that affect the spine are extensors and flexors. The extensor muscles enable us to stand up and lift objects. The extensors are attached to the back of the spine. The flexor muscles are in the front and include the abdominal muscles. These muscles enable us to flex, or bend forward, and are important in lifting and controlling the arch in the lower back.
    The back muscles stabilize your spine. Something as common as poor muscle tone or a large belly can pull your entire body out of alignment. Misalignment puts incredible strain on the spine (see Exercise for a Healthy Back).
    Vertebrae are the 33 individual bones that interlock with each other to form the spinal column. The vertebrae are numbered and divided into regions: 7 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 4 coccygeal (Fig. 2). Only the top 24 bones are moveable; the vertebrae of the sacrum and coccyx are fused. The vertebrae in each region have unique fea­tures that help them perform their main functions.
    Cervical region – the main function of the cervical spine is to support the weight of the head (about 10 pounds). The seven cervical vertebrae are numbered C1 to C7. The cervical region has the greatest range of motion because of two specialized vertebrae that connect to the skull. The first vertebra (C1) is the ring-shaped atlas that connects directly to the skull. This joint allows for the nodding or “yes” motion of the head. The second vertebra (C2) is the peg-shaped axis, which has a special projection called the odontoid process, that the atlas pivots around. This joint allows for the side-to-side or “no” motion of the head.
    Thoracic region –the main function of the thoracic spine is to protect the organs of the chest by providing attachment for the rib cage. The 12 thoracic vertebrae are numbered T1 to T12. The range of motion in the thoracic spine is limited.
    Lumbar region –the main function of the lumbar spine is to bear the weight of the body. The five lumbar vertebrae are numbered L1 to L5. These vertebrae are much larger in size for their weight-bearing function.
    Sacral region –the main function of the sacrum is to provide attachment for the iliac (hip) bones and protect the pelvic organs. There are five sacral vertebrae, which are fused together. Together with the iliac bones, they form a ring called the pelvic girdle.
    Coccyx region –the four fused bones of the coccyx or tailbone don’t really have a function. It is an embryology remnant of a tail from our primate ancestors.

    While vertebrae have unique regional features, every vertebra has three functional parts (Fig. 3):
    • <LI class=body>an anterior drum-shaped body designed to bear weight and withstand compression (purple) <LI class=body>a posterior arch-shaped bone that protects the spinal cord (teal)
    • posterior star-shaped processes designed as outriggers for muscle attachment (beige)
    Intervertebral discs
    Each of the 24 moveable vertebrae in your spine are separated and cushioned by an intervertebral disc, keeping them from rubbing together. Discs are designed like a radial car tire. The outer ring, called the annulus fibrous, has criss-crossing fibrous bands, much like a tire tread. These bands attach between the bodies of each vertebra and contain the gel-filled center called the nucleus pulposus, much like a tire tube (Fig. 4).
    Discs function like coiled springs. The criss-crossing fibers of the annulus pull the vertebral bodies together against the elastic resistance of the gel-filled nucleus. The nucleus acts like a ball-bearing when you move, allowing the vertebral bodies to roll over the incompressible gel. The gel-filled nucleus is composed mostly of fluid. This fluid absorbed during the night as you lie down and is pushed out during the day as you move upright.
    With age, our discs increasingly lose the ability to reabsorb fluid and become brittle and flatter; this is why we get shorter as we grow older. Also diseases, such as osteoarthritis and osteoporosis, cause bone spurs (osteophytes) to grow. Injury and strain can cause discs to bulge or herniate, a condition in which the nucleus is pushed out through the annulus to compress the nerve roots causing back pain.
    Vertebral arch & spinal canal
    On the back of each vertebra body are bony projections that form the vertebral arch. The arch is made of two supporting pedicles and two arched laminae (Fig. 5). The hollow spinal canal contains the spinal cord, fat, connective tissue, and blood supply of the cord. Under each pedicle, a pair of spinal nerves exits the spinal cord and pass through the intervertebral foramen to branch out to your body.
    Surgeons often remove the lamina of the vertebral arch (laminectomy) to access and decompress the spinal cord and nerves to treat spinal stenosis, tumors, or herniated discs.
    Seven processes arise from the vertebral arch: the central spinous process, two transverse processes, two superior facets, and two inferior facets.
    Facet joints
    The facet joints of the spine allow back motion. Each vertebra has four facet joints, one pair that connects to the vertebra above (superior facets) and one pair that connects to the vertebra below (inferior facets) (Fig. 6).
    The ligaments are strong fibrous bands that hold the vertebrae together, stabilize the spine, and protect the discs. The three major ligaments of the spine are the ligamentum flavum, anterior longitudinal ligament (ALL), and posterior longitudinal ligament (PLL) (Fig. 7). The ALL and PLL are continuous bands that run from the top to the bottom of the spinal column along the vertebral bodies. They prevent excessive movement of the vertebral bones. The ligamentum flavum attaches between the lamina of each vertebra.
    Spinal cord
    The spinal cord is about 18 inches long and is the thickness of your thumb. It runs within the protective spinal canal from the brainstem to the 1st lumbar vertebra. At the end of the spinal cord, the cord fibers separate into the cauda equina and continue down through the spinal canal to your tailbone before branching off to your legs and feet. The spinal cord serves as an information super-highway, relaying messages between the brain and the body. The brain sends motor messages to the limbs and body through the spinal cord allowing for movement. The limbs and body send sensory messages to the brain through the spinal cord about what we feel and touch. Sometimes the spinal cord can react without sending information to the brain. These special pathways, called spinal reflexes, are designed to immediately protect our body from harm.
    The nerve cells that make up your spinal cord itself are called upper motor neurons. The nerves that branch off your spinal cord down your back and neck are called lower motor neurons. These nerves exit between each of your vertebrae and go to all parts of your body.
    Any damage to the spinal cord can result in a loss of sensory and motor function below the level of injury. For example, an injury to the thoracic or lumbar area may cause motor and sensory loss of the legs and trunk (called paraplegia). An injury to the cervical (neck) area may cause sensory and motor loss of the arms and legs (called tetraplegia, formerly known as quadriplegia).
    Spinal nerves
    Thirty-one pairs of spinal nerves branch off the spinal cord. The spinal nerves act as “telephone lines,” carrying messages back and forth between your body and spinal cord to control sensation and movement. Each spinal nerve has two roots (Fig. 8). The ventral (front) root carries motor impulses from the brain and the dorsal (back) root carries sensory impulses to the brain. The ventral and dorsal roots fuse together to form a spinal nerve, which travels down the spinal canal, alongside the cord, until it reaches its exit hole - the intervertebral foramen (Fig. 9). Once the nerve passes through the intervertebral foramen, it branches; each branch has both motor and sensory fibers. The smaller branch (called the posterior primary ramus) turns posteriorly to supply the skin and muscles of the back of the body. The larger branch (called the anterior primary ramus) turns anteriorly to supply the skin and muscles of the front of the body and forms most of the major nerves.
    The spinal nerves are numbered according to the vertebrae above which it exits the spinal canal. The 8 cervical spinal nerves are C1 through C8, the 12 thoracic spinal nerves are T1 through T12, the 5 lumbar spinal nerves are L1 through L5, and the 5 sacral spinal nerves are S1 through S5. There is 1 coccygeal nerve.
    The spinal nerves innervate specific areas and form a striped pattern across the body called dermatomes (Fig. 10). Doctors use this pattern to diagnose the location of a spinal problem based on the area of pain or muscle weakness. For example leg pain (sciatica) usually indicates a problem near the L4-S3 nerves.
    Coverings & spaces
    The spinal cord is covered with the same three membranes as the brain, called meninges. The inner membrane is the pia mater, which is intimately attached to the cord. The next membrane is the arachnoid mater. The outer membrane is the tough dura mater (Fig. 8). Between these membranes are spaces used in diagnostic and treatment procedures. The space between the pia and arachnoid mater is the wide subarachnoid space, which surrounds the spinal cord and contains cerebrospinal fluid (CSF). This space is most often accessed when performing a lumbar puncture to sample and test CSF or during a myelogram to inject contrast dye. The space between the dura mater and the bone is the epidural space. This space is most often accessed to deliver anesthetic numbing agents, commonly called an epidural, and to inject steroid medication (see Epidural Steroid Injections).
    Sources & links
    If you have more questions, please contact the Mayfield Clinic & Spine Institute at 800-325-7787 or 513-221-1100. Additional info is available on the web.
    dorsal: the back or posterior side of the body.
    kyphosis: an abnormal forward curvature of the thoracic spine, also called hunchback.
    lordosis: an abnormal curvature of the lumbar spine, also called swayback.
    paraplegia: paralysis of both legs and lower body below the arms indicating an injury in the thoracic or lumbar spine.
    quadraplegia: paralysis of both legs and arms indicating an injury to the cervical spine.
    scoliosis: an abnormal side-to-side curvature of the spine.
    ventral: the front or anterior side of the body.
    updated: 3.2009
    reviewed by > Tonya Hines, CMI

    Figure 1. The spine's natural curves act like a coiled spring to absorb shock, maintain balance, and allow range of motion throughout the spinal column.

    Figure 2. The five regions of the spinal column.

    Figure 3. While vertebrae have unique regional features, every vertebra has three main parts: body (purple), vertebral arch (green), and processes for muscle attachment (orange).

    Figure 4. Discs are made of a gel-filled center called the nucleus and a tough fibrous outer ring called the annulus. The annulus pulls the vertebral bodies together against the resistance of the gel-filled nucleus.

    Figure 5. The vertebral arch (teal) forms the spinal canal through which the spinal cord runs. Seven bony processes arise from the vertebral arch to form the facet joints and processes for muscle attachment (beige).

    Figure 6. The superior and inferior facets connect each vertebra together. There are four facet joints associated with each vertebra.

    Figure 7. The ligamentum flavum, anterior longitudinal ligament (ALL), and posterior longitudinal ligament (PLL) allow the flexion and extension of the spine while keeping the vertebrae in alignment.

    Figure 8. The ventral (motor) and dorsal (sensory) roots join to form the spinal nerve. The spinal cord is covered by three layers of meninges: pia, arachnoid and dura mater.

    Figure 9. The spinal nerves exit the spinal canal through the intervertebral foramen below each pedicle.
    Figure 10. A dermatome pattern shows which spinal nerves are responsible for sensory and motor control of specific areas of the body.

  2. #22
    Moderator jody's Avatar
    Join Date
    Jan 2004
    east o the southern warren
    im wondering if the injection might wear off. and for the pooper probs, you kinda have to teach your body a schedual. if it turns out you have permanent cauda equina syndrome, you have company, I have it and so do others here, I can tell you that the broken glass burn you get from cauda equina pain is not very treatable. and for the urologist. you need proly to get the urodinamics test, which they put electodes in places, measure responses from muscles, and they measure how much you pee and if any is left in the bladder. if it turns out you have a lot left in your bladder after peeing, you will proly need to begin intermitent cathederising. that will help with the constant need to pee. your body gets used to being on an elimination schedual after a while, and you learn to tell if you need to go. I get an eleveted heart beat, feel queezy, break out into a sweat. that is not often because of the schedual thing. I do find it helpful to have a change of clothes, wipes, and regular supplys like caths gloves and zip lock bags for wet clothes which is always in my backpack. dont let it get you down too bad. you can get past it but it does sometimes take monthes or years to figure out a bladder/bowl routine that will work for you.

  3. #23
    Thank you for those very informative postings. I have (the soonest I could get in) an appointment with my PCP in August, who is the person I need to go through to get any referrals, and like I said, my insurance is fouled just now, so I'm working on that. If she won't refer me to anyone else, I'll tell her I'd like a second opinion from her 'mentor' physician & see what that person has to say. With 2 kids, I can't keep going downhill (and why so fast?) - I need some kind of concrete help from her.
    Last edited by Coleen; 07-20-2009 at 02:23 PM. Reason: spelling

  4. #24
    And someday I'm going to figure out how to make MRI & CT machines that will work in an upright position - so much is lost when doing these laying down, when most of the damage is much more visable in an upright or even semi-upright position!

  5. #25
    Hi, and yes, I'm a real ordained (sometimes have trouble acting like one, though) minister. I'm afraid I've been quite testy of late, too, and I'm sorry about that.
    The gas passer who did the injection said it was just a bandaid & I'd need more to help, setting no limits except the 3 per year on the number. She wasn't real optimistic about it being a long term help, so I'm aware it'll wear off, I just hope what little help it gave will last a long while.
    I'll see about getting into see the specialists that've been advised, although confrontaton isn't the easiest thing for me (by a long shot). I get frustrated very quickly & forget what I needed to say, and when I write it down, it's still hard for me. Guess I'll need to "grow a pair" (Rude - my bad) as my sons keep saying & start speaking up for myself. If it was my kid having these problems, I'd be right in there.
    Last edited by Coleen; 07-21-2009 at 12:54 AM. Reason: spelling, of course

  6. #26
    Hi. Spent two+ hours yesterday pitching baseballs to my boys - nearly got hit cause I couldn't get out of the way, but they had fun. Joe (8yo) said he was glad "Mom was back" even though I was using open armed crutches that my brother got me at the Good Will. They work, so I'm not complaining. I paid for it with horrible leg pain/numbness, weakness & my foot even had the nerve to drag! What a putz!
    Wondering what your (anyone) input would be about riding my big (125cc) scooter (it's the 'body' size of a 150cc honda) with my boys - it's shocks are set so the ride is even smoother than in my car, but...?
    Hurt & leg is weak/painful/numb today. Oops.
    Last edited by Coleen; 07-22-2009 at 10:07 AM. Reason: what else - spelling

  7. #27
    I would take it easy for a while-everything in moderation!

  8. #28
    That's good advice. It's hard for me to 'hang out' after fishing, kayaking, baseball, riding, etc with my boys, but I do tend to forget I need to take things gragual so I don't do further damage. Does anyone have the answer to the 'room' there's supposed to be around the spinal cord at L4-L5 & at L5-S1? Mine are 6-7mm atL4-L5 & 9mmat L5-S1. Thanks!
    Last edited by Coleen; 07-24-2009 at 04:46 PM. Reason: repairing an oops

  9. #29
    Quote Originally Posted by Rev Coleen View Post
    That's good advice. It's hard for me to 'hang out' after fishing, kayaking, baseball, riding, etc with my boys, but I do tend to forget I need to take things gragual so I don't do further damage. Does anyone have the answer to the 'room' there's supposed to be around the spinal cord at L4-L5 & at L5-S1? Mine are 6-7mm & 9mm respectivly. Thanks!
    "I'm confused on what to do, how to proceede. I guess my problem isn't really an SCI, but what is it?" your quote...early in thread.
    Take it easy.
    Last edited by mckeownp; 07-22-2009 at 10:19 PM. Reason: establishing quote

  10. #30
    I guess I have been acting pretty stupidly, of late. I'm afraid I keep getting into a 'pity party' with myself, when I have no right to. You guys all have things so much harder than I do, and I need to stop feeling sorry for myself & just live with it. I was in the ER yesterday because I hurt so bad I couln't stand at all - sitting even didn't help - they did a 'phone consult' with a neuro-ortho pod, who said my condition "isn't bad enough for surgical intervention." I had the feeling that I was being treated like a 'drug seeker' instead of someone with a 'real' problem, so I guess I'll just have to wait it out. It'll either get better or worse, but me complaining about it isn't the right thing to do - you guys are dealing with your problems, I need to deal with mine.
    And you're right, since you know about these things - I can't be an SCI
    Thanks for the advice anyway.
    Rev Coleen
    Last edited by Coleen; 07-23-2009 at 10:58 PM.

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts