Fine Balance: Class Of Spinal Cord Neurons Makes Sure That Sides Of Body Don't Get Ahead Of One Other

ScienceDaily (Oct. 18, 2008) — Once a toddler has mastered the art of walking, it seems to come naturally for the rest of her life. But walking and running require a high degree of coordination between the left and right sides of the body. Now researchers at the Salk Institute for Biological Studies have shown how a class of spinal cord neurons, known as V3 neurons, makes sure that one side of the body doesn't get ahead of the other.

The findings, published in the Oct. 9 issue of Neuron, mark an important milestone in understanding the neural circuitry that coordinates walking movements, one of the main obstacles in developing new treatments for spinal cord injuries. In addition to establishing a balance between both sides of the body, they found that the V3 neurons ensure that the stepping rhythm is robust and well-organized.

"In the case of cervical spinal cord injuries, the spinal network that drives your limbs and allows you to walk is still there but no longer receives appropriate activating inputs from the brain." says Martyn Goulding, Ph.D., a professor in the Molecular Neurobiology Laboratory, who led the study. "The fact that the V3 neurons are important for generating a robust locomotor rhythm makes them good candidates for efforts aimed at therapeutic intervention after spinal cord injury."