Spinal Cord Injury Therapies

Wise Young, PhD MD
W. M. Keck Center for Collaborative Neuroscience
Rutgers University, Piscataway, New Jersey
http://carecure.rutgers.edu
State-of-the-Art 1995

- **Acute and Subacute Therapies**
 - Methylprednisolone is neuroprotective (NASCIS, 1990)
 - GM1 improves locomotor recovery in humans (Geisler, 1991)

- **Spasticity and Pain Therapies**
 - Intrathecal baclofen pump (Medtronics)
 - Tricyclic antidepressant amitriptyline (Elavil)

- **Promising Therapies**
 - IN-1 antibody stimulates regeneration in rats (Schwab, 1991-)
 - Intravenous 4-aminopyridine improves function in people with chronic spinal cord injury (Hansebout, 1992-)
 - Fetal tissue transplants survive in animals (Reier, 1992-)
 - Functional regeneration of neonatal spinal cords (Kawaguchi, 1994-)
 - Neurotrophin-secreting fibroblast transplants (Tuszynski, 1994-)
Methylprednisolone

- **NASCIS 3**
 - High dose (30 mg/kg bolus followed by 5.4 mg/kg/hr • 23h iv)
 - MP vs. Placebo: 75% vs. 59% (incomplete), 21% vs. 8% (complete)
 - More effective when started within 3 hours after injury
 - 48h MP more effective than 24h MP when started >3h after injury
 - >24h therapy may be associated with more severe pneumonia

- **Mechanisms of action**
 - Anti-inflammatory (glucocorticoid receptor mediated mechanisms)
 - Immunosuppression (suppresses cytokine & antibody production)
 - Anti-oxidant & lipid peroxidation inhibitor (high dose only)

- **Cellular effects**
 - Reduces necrosis and edema
 - Suppresses pro-inflammatory gene expression
 - Prevents apoptosis in white matter
Surgical Therapies (1995+)

- Stabilization & decompression
 - Stabilization
 - Anterior and posterior plates
 - Titanium cage & other vertebral fusion methods
 - Delayed decompression restore function (Bohlman)
 - Untethering spinal cord improves function
 - Adcon gel and other methods to prevent epidural scarring
- Urological procedures
 - Suprapubic catheterization & ileal conduits (Mitrafanoff)
 - Stents and artificial sphincters for bladder and bowel
- Syringomyelic cysts
 - Remove subdural adhesions
 - Restoring CSF flow
 - Dural grafts
- Peripheral nerve bridging
 - Implanting avulsed roots or nerves into cord for
 - Muscle reinnervation
 - Reduce neuropathic pain
 - Bladder reinnervation
 - Peripheral nerve bridging
 - Bridging spinal accessory, intercostal, and ulnar nerves to phrenic, sciatic, pudendal, and other peripheral nerves
 - End-to-side anastomoses
Drug Therapies (1995>)

- **Acute & subacute therapies**
 - NASCIS 2:
 - 24-hour methylprednisolone <8h better than placebo
 - NASCIS 3:
 - 48-hour methylprednisolone (MP) is better than a 24-hour course of MP when started >3 hours after injury (1998).
 - 48-hour course of Tirilazad mesylate after an initial bolus of MP is similar to 24-hour course of MP
 - MP+GM1
 - accelerates 6-week recovery compared to MP alone but not one year (Geisler, 1999)

- **Chronic therapies**
 - **Tizanidine**
 - Reduces spasticity with less side-effects
 - **Intrathecal baclofen**
 - Effectively reduces even severe spasticity with minimal side-effects
 - **Oral 4-aminopyridine**
 - May reduce pain and spasticity (Hayes, et al. 1998)
 - May improve bladder, bowel, and sexual function
 - A third of patients may get improvement of motor and sensory function on 4-AP
Rehabilitative Therapies
(1995>)

- **Bladder Function**
 - Urodynamic studies
 - Intravesicular instillation
 - Ditropan
 - Capsaicin

- **Neuropathic Pain Therapies**
 - Antidepressants
 - Amitryptiline (Elavil)
 - Anti-epileptic analgesics
 - High dose Neurontin (Gabapentin)
 - Glutamate receptor blockers
 - Ketamine
 - Dextromethorphan
 - Cannabinoids

- **Functional electrical stimulation**
 - Implanted hand muscle stimulation (Freehand)
 - FES stimulators
 - Leg/walking stimulators (Parastep)
 - FES exercise devices

- **Reversing learned non-use**
 - Forced-use training
 - Biofeedback therapy
 - Supported treadmill ambulation training
 - Robotic exercisers
Regenerative Therapies
(1995>)

- Axonal growth inhibitor blockade
 - Nogo receptor blockers (Strittmatter, 2001-)
 - Chondroitinase (Bradbury, 2002)
 - C3 rho inhibitor (McKerracher, 2001)

- Purine nucleotides
 - Inosine (Benowitz, et al. 1999)
 - AIT-082 (Neotherapeutics)
 - Adenosine (Chao, et al., 2000)

- Therapeutic vaccines
 - Spinal cord homogenate vaccine (David, et al., 1999)
 - Myelin-basic protein & copaxone (Schwartz, 2001)

- Cell Transplants
 - Activated macrophages (Schwartz, et al. 1998)
 - Olfactory ensheathing glia (Ramos-Cuetos, 2000)
 - Nasal mucosa (Lu, et al. 2002)

- Electrical stimulation
 - AC electrical currents stimulates axonal growth and orients glia (Borgens, et al. 1997)

- Growth stimulators
 - Nerve bridge & growth factor cocktail (Cheng & Olson, 1996)
 - cAMP & Rolipram (Filbin, 2001)
 - L1 (Roonprapunt, et al., 2002)
 - Combination neurotrophins NGF+BDNF+NT3 (Xu, 2001)
Remyelinative Therapies (1995+)

- Schwann cells
 - Schwann cell invasion into the injury site (Blakemore, 1990)
 - Schwann cell transplants (Vollmer, 1997)
 - Peripheral nerve transplants (Kao)

- Oligodendroglial cells
 - Endogenous stem cells produce oligodendroglial precursor cells (Gage, 1999)
 - O2A cells remyelinate spinal axons (Blakemore, et al. 1996-)
 - Transplanted embryonic stem cells produce oligodendroglia that remyelinate the spinal cord (McDonald, 1999).

- Stem cells
 - Mouse embryonic stem cell to rats (McDonald, et al. 2000)
 - Porcine fetal stem cells (Diacrin)
 - Human fetal stem cells (Moscow & Novosibirsk)

- Olfactory ensheathing glia (OEG)
 - Transplanted OEG cells remyelinate axons in the spinal cord (Kocsis, et al. 1999)

- Antibody remyelination therapies
 - M1 antibody stimulates remyelination (Rodriguez, 1996-)
 - Copaxone (copolymer 2) improved recovery in rats (Schwartz, et al. 2001)
Current Clinical Trials

- Fetal spinal cord transplants to treat progressive syringomyelia
 - Gainesville Florida, Rush Presbyterian Chicago, Karolinska in Sweden, Moscow, Novosibirsk, and China
- 4-aminopyridine for chronic SCI
 - Acorda: Phase 3 trial in 82 U.S. & Canadian SCI Centers
- Activated macrophage transplants for subacute SCI
 - Proneuron: Tel Aviv, Erasmus Hospital (Brussels), Craig Hospital (Denver)
- Porcine neural stem cell transplants for chronic SCI
 - Diacrin: Albany Med. Center and Washington University in St. Louis
- Alternating current electrical stimulation for subacute SCI
 - Purdue University in Indiana
- AIT-082 (Neotrofin) therapy of subacute spinal cord injury
 - Neotherapeutics: Ranchos Los Amigos, Gaylord, Craig, Thomas Jefferson
- Olfactory ensheathing glial (OEG) transplants
 - Brisbane & Lisbon (nasal mucosa), Beijing (fetal OEG)
Olfactory ensheathing glia

- Fetal OEG cells
 - Bipolar (migrating)
 - Multipolar (directing)
 - “Fried egg” (ensheathing)

- Markers
 - Laminin
 - L1 CAM
 - Nestin
 - GFAP
 - P75 (NGF receptor)
Other Clinical Studies

- Supported treadmill ambulation training to reverse learned non-use
- Spinal cord L2 stimulation to activate locomotor generator
 - Hermann in Tucson and Dimitrijevic in Vienna
- Experimental surgical approaches
 - Omentum transplants (U.S., Cuba, China, and Italy)
 - Nerve bridging of spinal cord (University of Sao Paulo)
 - Fetal stem cell transplants (Moscow, Novosibirsk, Beijing)
 - Peripheral nerve bridging to spinal cord (Brunelli in Brescia)
 - Peripheral nerve bridging to bladder and muscle (Zhang in Shanghai)
 - Bridging spinal cord injury site with peripheral nerves & growth factor cocktail (Cheng in Taiwan)
 - Untethering, peripheral nerve transplants, omentum transplant, hyperbaric oxygen, and 4-aminopyridine (Carl Kao in Ecuador)
 - Shark embryonic transplants (Tijuana)
Upcoming Clinical Trials

- IN-1 antibody to regenerate axons in chronic SCI
 - Novartis (Schwab at University of Zurich)
- M1 antibody to remyelinate spinal cord
 - Acorda (Mayo Clinic)
- Inosine to stimulating sprouting in chronic spinal cord injury
 - BLSI (Massachusetts General Hospital)
- Olfactory ensheathing glia (OEG) transplants
 - Porcine OEG (Alexion, Yale University)
 - OEG autograft (Madrid, Miami Project)
- Schwann cell transplants
 - Schwann cell autograft for MS (Yale University) & SCI (Miami Project)
- Adult stem cell transplants
 - Autografts (adult stem cells from bone marrow, fat cells)
- Chondrotinase ABC
 - Enzyme to break down chondroitin 6-sulfate proteoglycans (Seikagaku, Japan)
Generations of SCI Therapies

First Generation Therapies

- 4-Aminopyridine (Acorda)
- Growth stimulators
 - GM1 (Fidia)
 - AIT-082 (Neotherapeutics)
 - AC electrical currents (Purdue)
- Cell transplants
 - Fetal spinal cord transplants (UFG)
 - Macrophages (Proneuron)
 - Porcine fetal stem cells (Diacrin)
 - Human fetal stem cells (Russia, China)
 - Peripheral nerve grafts (Taiwan)
 - Olfactory ensheathing glia (Beijing)
 - Nasal mucosa autografts (Lisbon, Brisbane)
 - Neurotrophin-secreting fibroblasts (UCSD)
- Locomotor training
 - Supported ambulation treadmill training (Bonn, Zurich, UCLA, etc)
 - Locomotor FES (Arizona, Vienna)

Second Generation Therapies

- Immune therapies
 - M1 antibody (Acorda)
 - Copolymer Copaxone (Teva)
- Anti-growth inhibition therapies
 - Humanized IN-1 (Novartis)
 - Rollipram (PDE-4 inhibitor)
 - C3 Rho Kinase inhibitor (BioAxone)
 - Chondroitinase ABC (Seigaku)
 - Nogo receptor blocker (Biogen)
- Growth factors
 - Neurotrophins (Regeneron)
 - Inosine (BLSI)
 - Neuregulins (CENES)
- Cell Transplants
 - Adult olfactory ensheathing glia
 - Bone marrow stem cells
 - Human neural stem cells
 - Genetically modified stem cells
 - Enteric glial stem cells
Third Generation Treatments

- Combination therapies
 - Regeneration
 - Bridging the injury site
 - Growth factors
 - Overcoming inhibition
 - Guiding axons to target
 - Remyelination
 - Stimulating remyelination
 - Remyelinating with Schwann, OEG, O2A, stem cells
 - Restoration
 - 4-aminopyridine
 - Biofeedback therapy
 - Forced use therapy
 - Activity induced plasticity

- Almost beyond imagination
 - Vaccine
 - Regenerative vaccines
 - Neuroprotective vaccines
 - Remyelinitive vaccines
 - Stem cells
 - Neuronal replacement
 - Reversing atrophy
 - Replacing motoneurons
 - Guiding axons
 - Gene therapy to express guidance molecules
 - Cell adhesion molecules direct axonal growth
 - Use of ephrins to control axonal pruning
Preparing for Recovery

- Avoid irreversible surgical procedures
 - Dorsal root rhizotomies
 - Peripheral nerve bridges
 - Tendon transfers
 - Omentum transfers
- Prevent muscle, bone, and neuronal atrophy
 - Don’t eliminate spasticity
 - Standing exercises to put stress on bones
 - Functional electrical stimulation (FES) to build muscle
 - Stem cell implants to muscle and spinal cord
- Relieve causes of continuing spinal cord damage
 - Decompression
 - Reduce syringomyelia
 - Untethering of cord
- Reverse learned non-use
 - Physical therapy
 - Activity-induced activity
 - Overground ambulation
 - Weight supported treadmill ambulation training
 - Biofeedback therapy
 - L2 locomotor generator stimulation

Prevent muscle, bone, and neuronal atrophy
Restorative Principles

- “Complete” is not complete
 - Severance or transections of the cord are very rare
 - <10% of axons can support substantial function, adding 5-10% sufficient
- Accelerating and extending recovery processes
 - Continued recovery in chronic SCI over many years
 - Spontaneous regeneration may occur in some people
- Surviving axons need to be myelinated
 - 4-aminopyridine improves conduction
 - Cell transplantation to remyelinate spinal axons
- Spinal cord capable of remarkable “plasticity”
 - Detailed specificity of reconnection is not necessary
 - Local sprouting can restore functions across the midline
- Reversing learned “non-use”
 - Even a short period of non-use can turn off circuits
 - Intensive “forced-use” exercise can restore function
Emerging Trends

- High-volume drug screening
 - Systematic drug design
 - Better tissue culture models
 - More efficient animal models

- Gene expression studies
 - Identification of endogenous repair & regenerative factors
 - Use of gene expression as an outcome measure for assess therapeutic effects

- Endogenous stem cells
 - The genes responsible for converting any cell into stem cells
 - Drugs to stimulate endogenous stem cells to proliferate and to go into reparative mode

- Immunotherapies
 - Some evidence indicates that immune cells (macrophages and lymphocytes) are reparative
 - Therapeutic vaccines to stimulate antibody production
 - Use of cytokines (i.e. IL-6) to stimulate repair and regeneration

- Molecular and Gene Therapies
 - Ex vivo gene therapies
 - Genetically modified progenitor or stem cells
 - Stem cells and lymphocytes seem to know where to go
 - In vivo gene therapy
 - Viral vectors
 - Non-viral vectors for gene delivery
Novel Remyelination Strategies

- **Cell transplantation**
 - Schwann cells
 - Oligodendroglia precursor
 - O2A cells remyelinate axons
 - Stem cells produce O2A
 - Olfactory ensheathing glia
 - Adult autograft
 - Fetal heterografts
 - Nasal mucosa
 - Stem cell transplants
 - Embryonic stem cells
 - Fetal stem cells (neural, umbilical cord blood)
 - Adult stem cells (bone marrow, neural, & skin)

- **Stimulation of remyelination**
 - M1 antibodies
 - Germ cell line IgM kappa auto-antibody that stimulate oligodendroglia to proliferate and to myelinate axons
 - IgM kappa antibodies may act as signaling molecules
 - M1 belongs in the same class of molecules as IN-1, the antibody that binds Nogo
 - Neuregulins
 - Neuregulin regulates neural precursor growth and the oligodendrocyte conversion
Progenitor Cells

Neurosphere

Nestin stain BRDU stain
Cell Loss and Replacement

Cell Loss
- Primary Cell Loss
- Secondary Necrosis
 - Central hemorrhagic necrosis leaves rim of white matter
 - Wallerian degeneration
- Apoptosis
 - Neuronal apoptosis in gray matter at 48 hours
 - Oligodendroglial apoptosis in white matter at 2 weeks
- Cystic degeneration
 - Syringomyelia
 - Chronic myelopathy
- Muscle Atrophy

Replacing lost cells
- Endogenous stem cells
 - Ependymal cells = stem cells of the spinal cord
 - Ependymal scaffolding support axonal growth
- Cell Replacement Therapies
 - Embryonic stem cells
 - NRPs and GRPs
 - Intrathecal stem cell
 - Systemic stem cell
 - Fetal neuronal transplants into muscle to prevent atrophy
- Stem cell therapies to reverse muscle atrophy
Each clinical trial has a limited probability of success.

To increase odds of clinical trial success, we must:
- Do systematic preclinical studies to establish and optimize therapies for clinical trials.
- Create a spinal cord injury clinical trial network.
- Randomize a larger percent of SCI patients to the best experimental therapies in comparison with best standard therapies.

The Program at Rutgers:
- Establish and disseminate well-standardized models & outcome measures.
- Sharing databases:
 - SCICure Consortium to share spinal cord injury data.
 - NGEL gene chip to share gene expression data.
- Standardized cell transplant (stem cells, precursor cells, olfactory ensheathing glia).
- Training workshops.
- Annual SCI clinical trial symposia for scientists and clinicians.